Basic trigonometry¶

For a right angle triangel we have:

\[ \sin \theta = \frac{opposite}{hypotenuse} \]
\[ \cos \theta = \frac{adjacent}{hypotenuse} \]
\[\begin{split} \tan \theta = \frac{opposite}{adjacent} \\ \tan \theta = \frac{\sin \theta}{\cos \theta} \end{split}\]

Soh-Cah-Toa

Radians¶

\(\pi \text{radian} = 180^o\)

Law of sine¶

For any triangle this holds

\[ \frac{\sin \alpha}{a} = \frac{\cos \beta}{b} = \frac{\sin \gamma}{c} \]

Law of cosine¶

\[ c^2 = a^2 + b^2 - 2ab \cos \gamma \]

Identities¶

\[\begin{split} \sin(-\theta) = - \sin(\theta) \\ \cos(-\theta) = \cos(\theta) \\ \sin 2 \theta = 2\sin \theta \\ \cos 2 \theta = \cos^2 \theta - \sin^2 \theta = 2\cos^2 \theta - 1 = 1 - \sin^2 \theta \\ \sin(\theta \plusmn \pi) = \sin \theta \cos \phi \plusmn \cos \theta \sin \phi \\ \cos(\theta \plusmn \pi) = \cos\theta \cos \phi -+ \sin \theta \sin \phi \end{split}\]