Information norm

The from xN(μ,Σ), where μ,Σ are the moment parameters of the gaussian distribution. But we can reexpress them in therms of canonnical parameters or natural parameters.

Λ=Σ1,ξ=Σ1μ

Which can be converted back to moment parameters using:

μ=Λ1ξ,Σ=Λ1

If we use the canonical parameters we can rewrite the NVM in information form:

NC(x|ξ,Λ)=(2π)D/2|Λ|1/2exp[12(xTΛx+ξTΛ1ξ2xTξ)]
  • Nc denotes information form

In this form we can express the marginalization and conditioning formulas as:

p(x2)=Nc(x2|ξ2Λ21Λ1ξ1,Λ22Λ21Λ111Λ12)
p(x1|x2)=Nc(x1|ξ1Λ12x2,Λ11)

Here we can see that the conditioning is easier in information form.

Also information form makes it easier to multiply two Gaussians:

Nc(ξf,λf)Nc(ξf,λf)=Nc(ξf+ξg,λf+λg)

In moment from this is much messier:

N(μf,σ2f)N(μf,σ2f)=N(μfσ2g+μgσ2fσ2g+σ2g,σ2fσ2gσ2g+σ2f)