Information norm¶
The from x∼N(μ,Σ), where μ,Σ are the moment parameters of the gaussian distribution. But we can reexpress them in therms of canonnical parameters or natural parameters.
Λ=Σ−1,ξ=Σ−1μ
Which can be converted back to moment parameters using:
μ=Λ−1ξ,Σ=Λ−1
If we use the canonical parameters we can rewrite the NVM in information form:
NC(x|ξ,Λ)=(2π)−D/2|Λ|1/2exp[−12(xTΛx+ξTΛ−1ξ−2xTξ)]
Nc denotes information form
In this form we can express the marginalization and conditioning formulas as:
p(x2)=Nc(x2|ξ2−Λ21Λ−1ξ1,Λ22−Λ21Λ−111Λ12)
p(x1|x2)=Nc(x1|ξ1−Λ12x2,Λ11)
Here we can see that the conditioning is easier in information form.
Also information form makes it easier to multiply two Gaussians:
Nc(ξf,λf)Nc(ξf,λf)=Nc(ξf+ξg,λf+λg)
In moment from this is much messier:
N(μf,σ2f)N(μf,σ2f)=N(μfσ2g+μgσ2fσ2g+σ2g,σ2fσ2gσ2g+σ2f)