Gamma Function¶

It extends the factorial function beyond the realm of nonnegative integers.

\(\Gamma(a) = \int_{0}^{\infty} x^a e^{-x}\frac{dx}{x}\)

Properties of the Gamma function:

  1. \(\Gamma(a+1) = a\Gamma (a)​\)

  2. \(\Gamma(n) = (n-1)! ​\) if n is a positive integer.

Multivariate:¶

\[\Gamma_D(x) = \pi^{(D)(D-1)/4} \prod_{i=1}^D \Gamma(x + (1 - i)/2)\]
  • \(\Gamma_1(a) = \Gamma(a)\) is the single variable gamma function.