Contents

Quadratic formula¶

An quadratic equation $\( ax^2 + bx + c = 0 \)$

Is solved by $\( x = \frac{-b \plusmn \sqrt{b^2 - 4ac}}{2a} \)$

  • \(a \ge 0\)

In general this has two roots (real/complex).

  • \(b^2-4ac = 0\) the two roots are equal and real

  • \(b^2 \ge 4ac\) then the two roots are unequal and real

  • \(b^2 \le 4ac\) the two roots are unequal and complex, thus has a mathematical solution but no physical

Prof¶

\[\begin{split} ax^2 + bx + c = 0 \\ 4a^2 + 4abx + 4ac = 0 \\ 4a^2x^2 + 4abx = -4ac \\ 4a^2x^2 + 4abx+ b^2 = b^2 -4ac \\ (2ax + b)^2 = b^2 - 4ac \\ 2ax + b = \plusmn \sqrt{b^2 - 4ac} \\ 2ax = - b \plusmn \sqrt{b^2 - 4ac} \\ x = \frac{- b \plusmn \sqrt{b^2 - 4ac}}{2a} \end{split}\]