Bridge regression¶

Generalization of \(l_1\) regularization.

\[\hat{w} = NNL(w) + \lambda \sum_j|w_j|^b \]
  • \(b \ge 0\)

This corresponds to MAP estimation using exponential pover distribution

\[ ExpPower(w| \mu, a,b) = \frac{b}{1a\Gamma(1 + 1/b)} \exp{ - \frac{|x - \mu|^b}{a}} \]

If:

  • \(b = 2\) we get an gaussian with \(a = \sigma \sqrt{2}\) correspoding to ridge regression

  • \(b=1\) we get the Laplace distribution corresponding to lasso

  • \(b =0\) we get \(l_0\) regression.