Log partition function

An important property of the exponential family is that the derivatives of the log partition function can be used to generate cumulants of the sufficient statistics. For this reason A(θ) is sometimes called a cumlant function.

First derivative

dAdθ=ddθ(logexp(θϕ(x))h(x)dx)=ddθexp(θϕ(x))h(x)dxexp(θϕ(x))h(x)dx=ϕ(x)exp(θϕ(x)h(x)dx)exp(A(θ))=ϕ(x)exp(θϕ(x)A(θ))h(x)dx=ϕ(x)p(x)dx=E[ϕ(x)]
  • p(x)=exp(θϕ(x)A(θ))h(x)

Second derivative

d2Adθ2=ϕ(x)exp(θϕ(x)A(θ))h(x)(ϕ(x)A(θ))dx=ϕ(x)p(x)(ϕ(x)A(θ))dx=ϕ2(x)p(x)dxA(θ)ϕ(x)p(x)dx=E[ϕ2(x)]E[ϕ(x)]2=Var[ϕ(x)]
  • p(x)=exp(θϕ(x)A(θ))h(x)

For the multivariate case we get:

2A(θ)=cov[ϕ(x)]

Hence the covariance is always positive definite, A(θ) is convex.