Logarithms and exponentials¶

In logarithms we ask to what power we must raise the base to get y. If we have a base 10 logarithm:

\[\begin{split} y = 10^{\log y} \\ \log y = x \\ y = 10^x \end{split}\]

Natural logarithm¶

Here the base is \(e\)

\[\begin{split} y = e^{\ln y} \\ \ln y = x \\ y = e^x \end{split}\]

Rules¶

\[\begin{split} \log (ab) = \log a + \log b \\ \log (a/b) = \log a - \log b \\ \log(a^n) = n \log(a) \\ \log(1/a) = \log(1) - \log(a) = 0 - \log(a) \end{split}\]